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INTRODUCTION

Climate change is driving profound changes in animal 
occurrence and community composition worldwide. 
Long- term increases in average temperature as well as in-
creases in acute, extreme weather events (e.g., heat waves) 
have been linked to both positive (Crossley et al., 2021; 
Kammerer et al., 2021) and negative outcomes for biodi-
versity (Oliver et al., 2016; Outhwaite et al., 2022; Sirois- 
Delisle & Kerr, 2018). Regardless of the direction of such 
outcomes, a rapidly changing climate has the potential 
to alter biological processes fundamentally, includ-
ing the biodiversity that maintains ecosystem services 
and supports global agricultural production (Johnson 
et al., 2023; Settele et al., 2016).

Insect responses to climate change are of specific con-
cern given the growing documentation of declines in a 
variety of taxa and regions (Halsch et al., 2021; Raven & 
Wagner, 2021). Although several anthropogenic drivers of 

global change are at play (Goulson et al., 2015; Hemberger 
et al., 2021), a changing climate is particularly menacing 
because of the many direct and indirect impacts it can 
have on insects and its capacity to be a force multiplier, 
interacting with other factors to exacerbate changes in in-
sect populations (Forrest et al., 2017; Hoover et al., 2012; 
Kenna et  al.,  2023). Like many global change drivers, 
rapidly increasing temperatures favour some species 
while potentially leading to local extirpations of others 
(Marshall et al., 2018). Although temperatures above the 
critical limits of most species (e.g., CTmax; Oyen et  al., 
2018) are unlikely, the extent to which climate warming 
has contributed to local shifts in insect abundance and 
community structure remains mostly unknown. This 
knowledge gap greatly hampers our understanding of a 
host of ecological processes and services and our ability 
to build resilience to future climate stressors.

Even among the most studied insect taxa, there is de-
bate about the extent, severity and direction of abundance 
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and range effects associated with climate change. 
Bumble bees are a prime example: as a genus adapted 
to cooler climates, they are likely sensitive to the effects 
of warming temperatures. However, some studies reveal 
extensive declines (Soroye et al., 2020; but see Guzman 
et  al.,  2021) while others suggesting resilience and rel-
ative stability (Guzman et al., 2021; Maebe et al., 2021) 
or mixed patterns of decline and increases over time 
(Jackson et al., 2022). Most current approaches examin-
ing the long- term influence of climate on bumble bees 
use occupancy models to relate changes in species occur-
rence to trends in climate, such as increasing tempera-
ture and changing precipitation (Janousek et al., 2023). 
Although this method yields valuable insights, it can be 
challenging to align the framework with the incidental 
and imperfect occurrence data that abound in large- 
scale insect databases, making model outcomes sensitive 
to occupancy assumptions (Guzman et al., 2021). More 
notably, the occupancy approach framework does not 
explicitly capture the physiological mechanisms driving 
species responses to warming temperatures. As such, a 
more thorough understanding of where and when insects 
are most impacted by climate change requires exploring 
alternative analytical methods that better tie climatic 
changes to estimates of insect physiological temperature 
preferences and limits.

We characterize bumble bee community responses to 
recent climate warming at the continental scale by ex-
amining changes in the community temperature index 
(CTI), a physiologically informed metric of community 
responses to climate based on the composition of cool-  
and warm- adapted species (Devictor et al., 2008). At its 
core, CTI tracks the weighted average of species' histor-
ical thermal preferences (i.e., the species temperature 
index, STI) within communities over time. When mod-
elled explicitly with changes in temperature, CTI also 
can help determine whether species are keeping pace 
with the velocity of temperature trends (i.e., an increase 
in warm- adapted species and a loss of cool- adapted spe-
cies in rapidly warming areas; Fourcade et al., 2019) or 
whether communities are accruing “climate debts,” as 
rising temperatures outpace species turnover (Devictor 
et al., 2012).

Using 50 years of records from the Bumble bees of 
North America database (Richardson et  al.,  2023), we 
tested whether rising temperatures have had a measur-
able effect on bumble bee communities across North 
America by quantifying the association between changes 
in CTI with spatially explicit trends in maximum sum-
mer temperature. Specifically, we addressed the follow-
ing questions: (1) Has bumble bee CTI increased over 
time across North America? (2) Are changes in CTI as-
sociated with increases in summer temperatures? (3) Are 
CTI changes greater in areas particularly vulnerable to 
a changing climate (e.g., higher latitudes and elevations)? 
and (4) Is a loss of cool- adapted or an increase in warm- 
adapted species driving the observed changes in CTI? We 

predicted a steady increase in bumble bee CTI in accor-
dance with documented increases in average maximum 
summer temperatures over the past century. We also ex-
pected that changes would be more dramatic at higher 
latitudes and elevations where the rate of temperature in-
creases has been greater (Pyke et al., 2012, 2016). Finally, 
we predicted that a host of common, warm- adapted 
species that have increased in occurrence over the past 
several decades would be the strongest contributors to 
changes in CTI across the continent.

M ETHODS

North American bumble bee occurrence and 
community data

We used occurrence records for 59 species of North 
American bumble bees from the bumble bees of North 
America database (BBNA; Richardson et  al.,  2023). 
This database comprises 781,280 records from 1805 to 
2020 from a variety of sources (e.g., natural history col-
lections, research studies, citizen science programmes). 
To match the temporal range of available climate data, 
we used bumble bee records collected between 1960 and 
2018. Because the database consists of an amalgam of 
sources, we took several steps to account for known bi-
ases (Bartomeus et al., 2019; Gotelli et al., 2021). The spe-
cies and community temperature indices at large scales 
of our analysis are robust to imprecision in the under-
lying distributional data (Devictor et  al.,  2008); none-
theless, we filtered the original dataset to include only 
complete records (i.e., identified to species, containing 
complete coordinates) and unique collection events (dis-
tinct combinations of species, date, coordinates and ob-
server; Figure 1a). This step helps to minimize the bias 
associated with unequal sampling efforts and differential 
data collection methods across all observers. Moreover, 
we conducted a range of sensitivity analyses (see below) 
to determine whether our results were robust given our 
assumptions and methodological decisions.

Is there evidence of an increase in bumble bee 
CTI over time?

Calculating the CTI first requires a determination of 
the species temperature index (STI; the historical av-
erage summertime temperature experienced over a 
species' approximate range; Figure  1b) for all species 
present within a community. For this calculation, we 
first extracted the subset of the bumble bee occurrence 
records between 1960 and 2000 as the baseline period 
to compare changes against. These records deline-
ated the approximate historical range of each species. 
Because range estimates for North American bumble 
bees are largely based on records from this dataset 
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(e.g., Williams et al., 2014), we are confident that they 
capture the range of almost all included species. Next, 
we extracted historical summertime maximum tem-
peratures (June–September) at all occurrence loca-
tions for a species from WorldClim2.1, a global climate 
database (Fick & Hijmans,  2017) at a 30 arc- second 
resolution. We used summer maximum monthly tem-
perature because the bulk of bumble bee records are 
collected during this period corresponding to the peak 
flight for most North American species. Last, for each 
species, we then calculated the mean of the extracted 
values to determine the STI estimate.

The CTI framework requires occurrence records to 
be delineated into communities to calculate CTI val-
ues for given locations/times (Devictor et  al.,  2008; 
Figure  1c). To do this, we created a hexagonal grid 

across North America at a broad spatial scale (50- km 
hexagonal grid resolution, centre to side: ~6600 km2) 
to represent “community” boundaries. We chose a 50- 
km resolution to ensure we would capture sufficient re-
cords within each grid cell to provide a robust estimate 
of the broad spatiotemporal trend of CTI (Jackson 
et  al.,  2022). Although these species assemblages are 
larger than the scale of a traditional ecological com-
munity for bees, the analysis is ultimately agnostic to 
this point, and it does not affect our specific questions. 
We refer to them as communities/CTI to maintain con-
sistency with the existing literature.

We calculated CTI within each grid cell where at least 2 
species records were present based on the full set of bum-
ble bee occurrence records from 1989 to 2018 (Figure 1d). 
We were constrained to using CTI calculations from 

F I G U R E  1  Conceptual figure of data cleaning (a), species temperature index calculation (b), community assignment (c), community 
temperature index calculation (d), temperature anomaly calculations (e) and modelling procedures used in our analyses (f).
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1989 onward because 1989 was the first year for which we 
could calculate a 30- year moving average summer tem-
perature anomaly (see below). We calculated CTI using 
two different methods, first using occurrence records for 
species i occurring within a given community (grid cell) j

and then using abundance- weighted estimates of species 
within each community:

where ai,j is the abundance of species i at grid cell j and 
n is the total number of species within a grid cell (Princé 
& Zuckerberg, 2015). In our case, the true abundance is 
not known, but we use the total number of individuals 
of unique collection events of species i within the com-
munity of bees at grid cell j as a proxy of abundance. 
These two approaches, though similar, emphasize the 
two mechanisms of change in CTI. Using occurrence 
records (Equation  1 ) allowed us to test shifts in CTI 
due to changes in occurrence (i.e., immigration/extirpa-
tion), while calculating CTI using abundance weighting 
(Equation 2) allowed us to understand shifts in CTI as 
a function of changes in local relative abundance (i.e., 
species becoming more common/rare within a given 
community).

Are changes in CTI associated with increases in 
summer temperatures?

We used generalized additive models (GAMs) to quantify 
trends in CTI over space and time and determine whether 
changes in CTI were related to short- , medium-  and long- 
term trends in temperature anomalies (Appendix  S1; 
Figure  1f). Generalized additive models provide a 
highly flexible computational framework to account for 
variable trends in spatiotemporal processes (Pedersen 
et al., 2019) and are especially well- suited for the analysis 
of potentially complex time series and can readily iden-
tify periods of significant change (Simpson, 2018).

For occurrence and abundance- weighted measures of 
CTI, we fitted GAMs to model the effects of spatial location 
(latitude, longitude and elevation), long- term trend (year), 
and short- , medium-  and long- term estimates of rising tem-
peratures (3- , 10-  and 30- year summertime maximum tem-
perature anomalies). For the remainder of this manuscript, 
we refer to this GAM as the global model (Equation 3). See 
Appendix S1 for model fitting and diagnostic details.

Are CTI changes greater in areas particularly 
vulnerable to a changing climate (e.g., higher 
latitudes and elevations)?

To determine whether CTI changes were largest (i.e., 
greater slope in fitted GAM) in areas experiencing ac-
celerated climatic changes, we examined the rate of 
change in the slope of our fitted model smooth function 
across latitudes and elevations (Figure S1; Appendix S1: 
Identifying areas of greatest change in CTI).

Which species are driving any observed changes 
in CTI?

To generalize the mechanism underlying the observed 
changes in CTI across North America and determine 
whether a loss of cool- adapted and/or an increase in 
warm- adapted species best explained the change in CTI, 
we modelled the trend in the relative abundance of cool-  
and warm- adapted species (Appendix  S1: Cool- warm 
adapted contributions). We also quantified species- 
specific contributions to the CTI trends using a jack-
knife approach, iteratively removing species from the 
global model and then re- fitting the model to quantify 
their spatially explicit impact on the predicted change 
in CTI (Appendix  S1: Species- specific contributions, 
Figures S7–S60).

We conducted all data wrangling, GIS operations, 
modelling and visualization using R (R Core Team, 
2017) using the aforementioned and following packages: 
tidyverse (Wickham et al., 2019), raster (Hijmans, 2023), 
sf (Pebesma, 2018), gratia (Simpson, 2023), mgcv (Wood, 
2011), performance (Lüdecke et  al., 2021), DHARMA 
(Hartig, 2022), janitor (Firke, 2021), paletteer (Hvitfeldt, 
2021), exactextractr (Daniel Baston, 2022), foreach 
(Microsoft & Weston, 2022) and data.table (Dowle & 
Srinivasan, 2023) packages.

RESU LTS

Bumble bee community temperature index has 
increased across a majority of North America

From 1989 to 2018, bumble bee CTI increased sub-
stantially across most of North America. Overall, CTI 
increased on average 0.99 ± 1.98°C (mean ± SD) over 
30 years. The magnitude of change in CTI was spatially 
variable, ranging from a decrease of 6.30°C to an increase 
of 7°C (Figure  2a). CTI increases primarily occurred 
from 2010 onward (Figure 3a) after being relatively sta-
ble from 1989 to 2000. Such changes strongly mimic the 

(1)Occurrence CTIj =

∑n

i=1
STIi,j

n

(2)Abundance −weighted CTIj =

∑n

i=1
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pattern summer maximum temperature anomalies, par-
ticularly for the 30- year average (Figure 3b). The predic-
tions were most certain across the coterminous United 
States where bumble bee records are numerous and less 
certain in the most northern grid cells in the high Tundra 
and Queen Elizabeth Islands as well as in the tropical 
wet forests of Mexico (Figure 2b). The spatial trends of 
the increase in CTI were nearly identical between occur-
rence and abundance- weighted CTI; however, changes 
in occurrence CTI were smaller (0.78 ± 1.75°C). On av-
erage, the community grid cells contained 4.2 species 
per year (range 2–22). The global model, which quanti-
fied the change in CTI as a function of space, time and 

changes in short- , medium-  and long- term temperature 
increases, explained a substantial portion of the devi-
ance in both the abundance- weighted (Table S1; 86.0%, 
adj- R2 = 0.849) and occurrence models (Table S1; 86.3%, 
adj- R2 = 0.851).

The results of our analysis were consistent irrespec-
tive of the grid scale used in aggregating communities 
(Figure  S2; Table  S2). The exception was in areas of 
British Columbia and Alaska where a highly concen-
trated spatial pattern of bumble bee records likely led to 
a predicted decrease in CTI in grid cells when aggregated 
at the 50 and 25 km grid scale. Aggregating at the largest 
scale (100 km centre- to- side hexagonal grid) revealed the 

F I G U R E  2  (a) Extrapolated spatial projection of the estimated change in community temperature index from 1990 to 2018 across North 
America. Differences in the community temperature index were calculated for each grid cell by subtracting the model predicted CTIt=1989 from 
predicted CTIt=2018. (b) Spatial projection of the mean uncertainty estimates across years from 1989 to 2018. (c) Spatial projection of the change 
in the 3- year, 10- year (d) and 30- year (e) average temperature anomaly. Differences were calculated by subtracting the 1989 anomaly from the 
2018 anomaly for each grid cell. Hexagonal grid cells are 100 km from side to side (~8600 km2).

F I G U R E  3  A significant increase in bumble bee community temperature is strongly associated with long- term warming and has 
accelerated in the last 15 years. (a) Model estimated temporal trend in community temperature index across North America plotted as the 
partial effect of “year” from the global GAM. (b) Model estimated temporal trend in 30- year average summer maximum temperature anomaly 
across North America plotted as the partial effect of “year.” Both panels include the 95% confidence interval.
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most wide- spread increases in CTI, with nearly all grid 
cells exhibiting an increase in CTI from 1989 to 2018.

Our models performed well when cross- validated 
using withheld data from the BBNA database (Figure S3). 
Coefficient of determination (R2) values ranged from 
0.79 to 0.81; root mean squared error (RMSE) ranged 
from 1.22 to 1.31; and mean absolute error (MAE) 
ranged from 0.91 to 0.96. In addition, our model perfor-
mance was consistent across the three tested grid scales. 
Predictions were most accurate for CTI values rang-
ing from 23 to 28°C which corresponded to the regions 
where the bulk of the occurrence records were collected. 
Prediction accuracy was most variable among cool re-
gions in the north and sub- arctic (CTI < 23°C).

Shifts in CTI are strongly related to long- term 
increases in summer temperature

Summertime maximum temperatures have increased 
over 1989–2018 (Figure 2c–e), with increases most ap-
parent at 10- year (0.630 ± 0.405°C) and 30- year average 
anomalies (0.969 ± 0.342°C; Figure  1d,e; Figure  S4). 
Increases in bumble bee CTI had a strong statisti-
cal association with increases in the 30- year sum-
mertime maximum temperature anomaly (Figure  4a; 
F = 4.561, p = 0.002). Increases in the 30- year tempera-
ture anomaly between 0 and 0.5°C had no impact on 
CTI. However, increases of over 0.5°C were associated 
with a rapid increase of up to 1°C in bumble bee CTI 
(partial effect due solely to 30- year temperature anom-
aly). Beyond a 1°C change in the 30- year temperature 
anomaly, changes in bumble bee CTI rapidly increase, 
with gains of 1 to 6.8°C. There was no statistically 
supported relationship between the 10- year average 
anomaly and bumble bee CTI (Figure  4b; F = 0.064, 
p = 0.802). The relationship of CTI with the short- term, 
3- year moving average shifts in summer temperature 
anomalies, while statistically supported, was weak and 
variable over the range of the anomalies (Figure  4c; 
F = 2.584, p = 0.032).

CTI is increasing fastest at low and high 
elevations, high latitudes and more recent years

We examined patterns in the rate of change in CTI across 
the continent to determine where and when the most ex-
treme changes in CTI were occurring and whether these 
areas overlapped with areas known to be heavily im-
pacted by a warming climate (Janousek et al., 2023). The 
rate of change in CTI was greatest at low (< 800 m) and 
high elevations (> 2000 m; Figure 5a) and increased with 
increasing latitude (Figure 5b). CTI increases predicted 
at high elevations also had greater uncertainty than 
those at low elevations, due in part to a higher concentra-
tion of occurrence records at lower elevations. The rate 
of change in CTI has increased from 1989 to 2018 and 
most rapidly after 2010 (Figure 5c). These results varied 
slightly when analysed with predictions from only grid 
cells containing occurrence records, with changes in CTI 
being greatest at high elevations (Figure S5a; >2000 m) 
and mid- high latitudes (Figure S5b; 35–60°). The tempo-
ral patterns of the rate of change were largely similar but 
were positive only from 2003 and beyond (Figure S5c), 
confirming the accelerating rate of CTI change from 
2010 onward that is exhibited when using predictions 
from all grid cells (Figure 5c).

CTI changes driven by loss of cool- adapted and 
increase in warm- adapted species

In the model predicting the temporal trend coefficient 
for species relative abundance, there was a significant 
interaction between species thermal niche, latitude and 
propagated error (χ2 = 14.53, p < 0.001, Table  S3). The 
relative abundance of cool- adapted species (n ~ 32 spe-
cies; Table S4) has declined across North America, with 
the rate of decrease (i.e., binomial model coefficient es-
timates) slowest at high latitudes (Figure 6a). In contrast, 
the relative abundance of warm- adapted species (n ~ 27 
species; Table S4) has increased across all areas south of 
~50° latitude. North of this 50° parallel, warm- adapted 

F I G U R E  4  Generalized additive model partial plots (i.e., marginal effects) show the model predicted effect of (a) 30- , (b) 10-  and (c) 3- year 
moving average temperature anomalies on the community temperature index. Positive values on the y- axes indicate an increase in community 
temperature index, while positive values on the x- axes indicate an increase in the average temperature relative to the long- term average. Solid 
line indicates strong evidence of a relationship.
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species are also decreasing in relative abundance. This 
general trend, a consistent loss of cold- adapted species 
and increase in warm- adapted species across most lati-
tudes, was broadly consistent across ecological regions 
(Figure  S6). The jackknife analysis revealed that the 
observed increases in CTI were driven by a host of de-
clining cool- adapted species (Figure 6b) and increasing 
warm- adapted species (Figure  6c). While several com-
mon species were included within the species with the 
largest observed effect on the increase in CTI, there was 
a relatively uniform contribution across many species, 
indicating that a rapidly changing climate is having an 
extensive, genus- level impact (Figures S6–S60).

DISCUSSION

We documented significant, rapid spatially extensive 
shifts in the thermal composition of North American 
bumble bee communities in response to long- term in-
creases in summer temperatures. Over the last 29 years 
across the continent, bumble bee communities in-
creasingly consist of fewer cool- adapted and more 
warm- adapted species with resultant increases in the 

community temperature index, a measure of the balance 
of warm-  and cool- adapted species. Changes are most 
pronounced at mid-  to high latitudes and high elevations 
in the American Rockies, Intermountain West and cen-
tral Mexico. We also document an alarming trend sug-
gesting that above 50° N, both cool-  and warm- adapted 
species are declining in relative abundance, indicating 
that warming temperatures are outpacing the capac-
ity of bumble bee species to respond or adapt (Kerr 
et al., 2015). The community temperature index increased 
according to both occurrence and abundance- weighted 
indices, suggesting that shifts in local abundance (i.e., re-
duced abundance of cool- adapted species) and broader 
changes in species occurrence that are consistent with 
range shifts underlie the observed changes in commu-
nity composition. Though relatively small areas exhib-
ited a decrease in the CTI, such changes were largely due 
to sampling artefacts in relatively remote regions (e.g., 
Alaska). Increasing the spatial resolution of the “com-
munity” revealed increases in the CTI across the entirety 
of North America (Figure  S2). Our model results are 
consistent with occupancy patterns that reveal both win-
ners and losers among bumble bee species in response 
to anthropogenic climate change (Jackson et al., 2022). 

F I G U R E  5  Estimates of the rate of change in community temperature index over time across (a) elevation, (b) latitude and (c) year. Yearly 
predictions of community temperature index are calculated from the global model for each grid cell using a generalized additive model with a 
single smooth of year to determine the temporal trend in community temperature index within the grid cell. For each fitted smooth (except for 
the year, c), we then calculated the mean derivative across its range (1989–2018) for each grid cell. We then plotted these derivative estimates 
against elevation and latitude to explore, across the extent of North America, where the rate of community temperature index change is 
greatest. We visualized the relationships (red lines) using a simple GAM. Model fits include the 95% confidence interval.
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Overall, our work provides strong evidence of the perva-
sive impacts a warming planet has for insect biodiversity, 
particularly for historically cool- adapted species. It also 
identifies regions of concern where anthropogenic cli-
mate warming is rapidly restructuring the communities 
of an ecologically important group of insects.

An increase in species turnover within biological 
communities is a logical consequence of a rapidly warm-
ing climate (Tingley & Beissinger, 2013). Similar shifts in 
community composition have been observed in birds in 
response to both warming summer (Devictor et al., 2008, 
2012) and winter (Princé & Zuckerberg, 2015) tempera-
tures. Because insects are ectotherms, temperature- 
induced shifts in range and abundance may be even more 
pronounced. Indeed, large changes in CTI have been re-
ported for bumble bees (Fourcade et al., 2019) and but-
terflies (Devictor et al., 2012); however, these trends in 
CTI are descriptive and not explicitly tied to spatial and 
temporal patterns of warming temperatures. Our results 
explicitly link these two phenomena—revealing a strong 
relationship between increases in CTI and long- term in-
creases in maximum summer temperatures across North 
America. Our results identified a clear threshold: areas 
experiencing a 30- year temperature anomaly of greater 
than or equal to 0.5°C exhibited a rapid increase in 
bumble bee CTI (Figure 2; dark orange and red areas, 
Figure 4a). Critically, our ability to explain increases in 
CTI was dependent on the scale of the moving average 
temperature anomaly. As such, we recommend using 
caution when investigating community responses over 
more restrictive (i.e., shorter) periods of time. Also worth 
noting is that the historical baseline period we choose 
for calculating species STI values is due to the availabil-
ity of rasterized climate data. Choosing an earlier base-
line period could reveal different patterns in community 
change; however, we believe this is unlikely given the sta-
bility of historical summer temperatures relative to the 
dramatic increases observed in recent decades.

The most severe responses to climate have tended 
to be at high latitudes. For example, regions north of 
45° have experienced rapid increases in temperature 
leading to pronounced phenological shifts across taxa 
(Parmesan,  2007). Our results support this trend, re-
vealing the largest rates of bumble bee CTI change at 
higher latitudes and high elevation. The bumble bee 
species in these locations tend to have narrower geo-
graphic ranges and be cold- adapted, traits identical to 
other insect taxa that have exhibited declines due to cli-
mate (Engelhardt et  al.,  2022; Halsch et  al.,  2021; Neff 
et  al.,  2022). Alarmingly, our results found that even 
warm- adapted species are struggling to respond to the 
pace of warming temperatures at higher latitudes: both 
cool-  and warm- adapted bumble bee species north of 50° 
N have exhibited significant declines in relative abun-
dance. This result supports previous work describing the 
limited capacity of bumble bees to track their northern 
range limits in accordance with warming temperatures 

(Kerr et  al.,  2015). Though additional confirmation is 
needed, our results suggest that northern bumble bee 
communities may be in crisis, with significant species 
turnover and declines in abundance that may threaten 
the persistence of populations in the coming decades.

Rapidly increasing CTI at high elevations suggests 
that cold- adapted species are being displaced by warm- 
adapted, low- elevation species. This phenomenon 
has been observed in the US Rocky Mountains where 
bumble bee communities are increasingly dominated 
by low- elevation species using high- elevation habitats 
as a thermal refugia (Pyke et  al.,  2011, 2012; Miller- 
Struttmann et  al., 2022). An upslope range expansion 
appears to be a common response of bumble bee com-
munities to warming temperatures rather than expan-
sions of northern ranges which require longer dispersal 
distances (Kerr et al., 2015; Sirois- Delisle & Kerr, 2018). 
Despite the rapid changes observed at higher latitudes, 
biological communities in southern latitudes and lower 
elevations are not protected from a changing climate 
(Dillon et al., 2010), and we documented shifts in CTI in 
central Mexico and at low elevations. Important to note 
is that if the species lost from communities have similar 
STI values to those species remaining, shifts in CTI may 
effectively be masked, highlighting a limitation of our 
approach.

We identified increases in CTI from changes in oc-
currence and changes in relative abundance between 
cool- adapted versus warm- adapted species. Shifts in 
local relative abundance align with existing research 
(Cameron et al., 2011; Hemberger et al., 2021); however, 
substantial range expansion of warm- adapted bum-
ble bees has not been described (Kerr et al., 2015) and 
may be unlikely given bumble bee dispersal capacities 
(Fijen,  2021). That said, select species of bumble bees 
may be capable of long- distance dispersal (Fijen, 2021), 
and significant range shifts by other insect taxa have 
been observed (Warren et  al.,  2001; Hickling, 2005). 
Regardless, our analysis revealed there are multiple 
warm- adapted species whose relative abundance is in-
creasing significantly and that exhibited a large con-
tribution to the increasing CTI across North America. 
Similarly, a host of declining, cool- adapted species ex-
hibited large contributions. Contributions to the CTI 
trend were spread out remarkably evenly among dif-
ferent species and not driven exclusively by common 
species (e.g., B. impatiens, B. vosnesenskii). This result 
indicates that certain species are sensitive to and more 
capable of effectively tracking or adapting to ideal cli-
matic conditions (Maebe et  al.,  2021). Several bumble 
bee species have exhibited both range increases (e.g., B. 
impatiens, Looney et al., 2019; Palmier et al., 2019) and 
increases in local abundance. However, other species 
(e.g., B. occidentalis) are not able to track warming and 
are likely to suffer substantial reductions in range as a 
result (Janousek et  al.,  2023). Such contrasts highlight 
the species- specific nature of bumble bee responses to a 

 14610248, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14492 by Jerem

y H
em

berger - U
niversity O

f W
isconsin , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 9 of 12HEMBERGER and WILLIAMS

rapidly changing climate (Jackson et al., 2022; Whitehorn 
et al., 2022). Additional research is needed detailing spe-
cies responses to warming conditions—focusing on iden-
tifying the physiological and evolutionary mechanisms 
that drive species' plasticity or susceptibility to changing 
environmental conditions.

An increase in the occurrence and abundance of 
warm- adapted species suggests a physiological or cli-
mate preference mechanism is at play. Several stud-
ies document significant, direct effects of warming 
on insect pollinators (CaraDonna et  al.,  2018; Kenna 
et al., 2021; Hemberger et al., 2023); however, indirect 
effects mediated through biotic interactions may be 
just as important (Ockendon et  al.,  2014, but see Iler 
et al., 2021). In the context of our study, this implies that 
shifts in bumble bee community composition are oc-
curring partly in response to climate- induced changes 
in the f loral resource landscape. Warming climates can 
decrease the abundance and temporal availability of 
resources due to earlier snowmelts, which in turn may 
lead to a decrease in bumble bee abundance (Ogilvie 
et  al.,  2017). Warming may also create phenological 
mismatches that reduce available forage for bees (Pyke 
et al., 2016, but see Bartomeus et al., 2011). Similarly, 
an increase in hot, dry summer conditions can signifi-
cantly reduce floral resources and the bumble bees that 
depend on them (Iserbyt & Rasmont, 2013; Timberlake 
et  al., 2019; Williams et  al., 2012), and similar pat-
terns have been observed for butterflies (Crossley 
et al., 2021). Unfavourable conditions, often a result of 
extreme weather events such as heat waves that are ex-
pected to increase significantly in the coming century 
(Lopez et al., 2018; Meehl & Tebaldi, 2004; Thompson 
et al., 2022), can create resource bottlenecks that lead 
to population declines and local extirpation (Maron 
et al., 2015). Because our study could not differentiate 
between direct and indirect pathways, parsing their rel-
ative impacts on bumble bees and other taxa is a criti-
cal research need. In the meantime, supporting bumble 
bees in the face of both direct and indirect effects may 
be accomplished by maintaining climate refugia, such 
as heterogeneity in vegetation structure, that can pro-
vide respite from temperature extremes to both bees 
(Pincebourde & Woods,  2020), plants and other taxa 
(e.g., birds, Kim et al., 2022) in addition to increasing 
spatial and temporal resource continuity to minimize 
negative indirect effects (Maron et al., 2015).

Given the spatiotemporal extent of our study, it is 
likely that warming summer temperatures and the tem-
perature profiles of bumble bee assemblages co- vary with 
other, known factors that influence bumble bee commu-
nity composition and occurrence. For example, losses in 
certain species across their range may be linked to dis-
ease (Colla et al., 2006; Szabo et al., 2012). At large scales, 
a loss of suitable habitat via land- use intensification and 
change is also of concern (Hemberger et al., 2021), but 

when examined together with shifts in land- use, climatic 
variables (and their associated indirect effects) tend to 
have as much or more power to explain long- term species 
trends than land- use or resource availability in bumble 
bees (Kerr et al., 2015), other wild bee species (Duchenne 
et al., 2020) and other insects (Dalton et al., 2023). That 
said, our and most previous analyses cannot exclude the 
potential confounding effect of habitat changes. For 
example, regions with a strong statistical association 
between temperature increases and CTI may also be 
experiencing rapid habitat changes that simultaneously 
impact bumble bee abundance and community compo-
sition. Our analyses cannot statistically detect such an 
overlap; however, it is unlikely, and we show that the 
areas of greatest increase in the community temperature 
index are in areas removed from the most significant 
effects of land- use change (e.g., high latitudes and ele-
vations; Halsch et al., 2021). Regardless, managing hab-
itat offers a critical tool that can be used to mitigate the 
impacts of a changing climate (Kim et al., 2022; Oliver 
et al., 2015, 2016; Outhwaite et al., 2022).

CONCLUSIONS

Climate change is causing significant, cross- scale im-
pacts on insect behaviour, populations and commu-
nities (Halsch et  al.,  2021; Høye et  al.,  2021; Lehmann 
et  al.,  2020; Raven & Wagner,  2021). In this paper, we 
document a substantial shift in the functional com-
position of bumble bee communities that is tied to a 
long- term increase of summer temperatures in North 
America. Several species appear to be tracking climate 
warming; however, cold- adapted species appear to lack 
the adaptive capacity to cope with rapidly climbing tem-
peratures and are being lost from bumble bee communi-
ties across the continent. Although the relative impact of 
direct and indirect climate effects on these community- 
level shifts remains unknown, our work contributes 
strong evidence that climate change is having a signifi-
cant, negative impact on many important pollinating in-
sect species with unknown consequences for ecosystems, 
both natural and agricultural. It is critical that we focus 
on designing resilience measures, such as climate refu-
gia and climate- focused habitat conservation, to combat 
the ongoing direct and indirect impacts a rapidly warm-
ing planet threatens. Such efforts must be paired with 
substantial decreases in emissions (Oliver et al., 2015)—a 
non- negotiable step to safeguard the planet's biodiversity 
for generations to come.
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